
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

SIMULATED E-BOMB EFFECTS ON ELECTRONICALLY 
EQUIPPED TARGETS 

 
by 
 

Enes Yurtoğlu 
 

September 2009 
 
 Thesis Advisor:   Terry Smith 
 Second Reader: Dan Boger 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
September 2009 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Simulated E-Bomb Effects on Electronically 
Equipped Targets 
6. AUTHOR(S)  Enes Yurtoğlu 

5. FUNDING NUMBERS 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT 
 
Like High Altitude Electromagnetic Pulse (HEMP), high power microwaves (HPM) produce intense energies, which 
may overload or damage various electrical system components such as microcircuits. This thesis investigates possible 
effects of a hypothetically designed HEMP-like weapon, an “e-bomb,” on electronically equipped target systems. 
 
The procedure to determine these possible effects is to estimate the electromagnetic coupling from first principles and 
simulations using a coupling model program (CEMPAT), pursuing a feasible geometry of attack, practical antennas, 
best coupling approximations of ground conductivity and permittivity, a reasonable system of interest representation 
from specifications, threat waveshape and operating frequency. The analysis procedure investigates roles of these 
factors contributes to the e-bomb coupling scenario. 
 
Those possible e-bomb effect results are then compared to a published and experimentally created threshold level 
table to determine whether any upset or damage is formed on the target system. Based on this comparison, the results 
are evaluated with respect to the factors that caused them to exceed, or not exceed, the threshold levels. Additionally, 
a conventional weapon attack scenario for the same target system is created. Its results are compared to the e-bomb 
attack. Finally, operational recommendations are given along with advantages and disadvantages for each type of 
attack. 
 

15. NUMBER OF 
PAGES  

127 

14. SUBJECT TERMS High Altitude Electromagnetic Pulses, High power microwaves, 
electromagnetic coupling, e-bomb, electronically equipped targets, threshold level, upset, 
damage, burnout,  conventional weapon, attack scenario, directed energy, threat 
environment, damage assessment, E-Field, cable shielding. 16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 
 

SIMULATED E-BOMB EFFECTS ON ELECTRONICALLY EQUIPPED 
TARGETS 

 
Enes Yurtoğlu 

1st Lieutenant, Turkish Air Force 
B.S., Turkish Air Force Academy, 2002 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN ELECTRONIC WARFARE SYSTEMS 
ENGINEERING 

 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2009 

 
 
 

 
Author:  Enes Yurtoğlu 
 
 

 
Approved by:  Lt. Col. Terry Smith    

Thesis Advisor    
 

    
 
   Dr. Dan Boger 
   Second Reader 
 

 
 

Dr. Dan Boger 
Chairman, Department of Information Science 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

Like High Altitude Electromagnetic Pulse (HEMP), high power microwaves 

(HPM) produce intense energies, which may overload or damage various 

electrical system components such as microcircuits. This thesis investigates 

possible effects of a hypothetically designed HEMP-like weapon, an “e-bomb,” on 

electronically equipped target systems. 

The procedure to determine these possible effects is to estimate the 

electromagnetic coupling from first principles and simulations using a coupling 

model program (CEMPAT), pursuing a feasible geometry of attack, practical 

antennas, best coupling approximations of ground conductivity and permittivity, a 

reasonable system of interest representation from specifications, threat 

waveshape and operating frequency. The analysis procedure investigates roles 

of these factors contributes to the e-bomb coupling scenario. 

Those possible e-bomb effect results are then compared to a published 

and experimentally created threshold level table to determine whether any upset 

or damage is formed on the target system. Based on this comparison, the results 

are evaluated with respect to the factors that caused them to exceed, or not 

exceed, the threshold levels. Additionally, a conventional weapon attack scenario 

for the same target system is created. Its results are compared to the e-bomb 

attack. Finally, operational recommendations are given along with advantages 

and disadvantages for each type of attack. 
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EXECUTIVE SUMMARY 

Nuclear weapons detonated at very high altitudes create High Altitude 

Electromagnetic Pulse (HEMP). At specific ranges, this pulse can overload or 

damage various electrical system components, such as microcircuits. High power 

microwaves (HPM) can also produce intense energy effects, similar to HEMP. An 

equivalency to the HPM instantaneous pulses can be created by special 

equipment that transforms the desired energy, using high frequency generators 

and stored battery power, into intense radiated microwaves. It can also be 

possible to create the same effect on the electronic devices by aiming a powerful 

electromagnetic transient, formed by a shaped antenna, against those same 

electronic system devices.  

This issue forms the very core objective of this thesis work. The study 

investigates possible effects of a hypothetically designed HEMP-like weapon, 

herein called an “e-bomb,” on electronically equipped target systems such as 

Integrated Air Defense Systems, Command Control Communications Computers 

and Intelligence (C4I) systems.  

The procedure followed in this study to determine these possible e-bomb 

effects is to estimate the electromagnetic coupling from first principles and 

simulations using appropriate coupling model programs. For example, the 

research pursues a feasible geometry of attack, practical antennas, best coupling 

approximations for true fields including the impacts of ground conductivity and 

permittivity near the deployed target, a reasonable system of interest 

representation from specifications, and consideration for the threat waveshape 

and operating frequency. The analysis procedure investigates the role each of 

these factors contributes to the e-bomb coupling scenario and the end-to-end 

process is described as follows: 

A simple topographical system of interest transmission-line coupling 

model is created as a target that consists of some mission-essential distributed 



 xviii 

equipment nodes, which include electronic device components. This model 

resembles a mobile, deployed, Integrated Air Defense System (IADS).  

Configuration detail of the model is created for each node of the target 

model, including node functions, specifications, distances to neighboring nodes, 

and the connection cable types.    

Appropriate environmental details of the electromagnetic coupling model 

like conductivity (σ), permittivity (ε), which are dependent on establishment field, 

polarization, and load configurations, are estimated in order to better represent 

true-fielded systems.  

A range, which turns out to be the detonation altitude over the target, is 

selected based on the desired frequency span, antenna diameter, and the 

geometry for the deployment platform source. This altitude, in-turn, is used to 

establish the intensity level for illumination of the topographical model, while also 

considering the corresponding weapons beam width and it’s spectral capabilities 

that might be possible with reasonable delivery systems. A basic approach is 

employed to define the geometry and to calculate the detonation altitude to 

ensure the radius of the whole target system area (including all cable lengths) is 

e-bomb illuminated. 

The hypothetical e-bomb created transient pulse used to interact with the 

modeled IADS system is defined from first principles. The pulse is developed and 

formatted as the expected amplitude, waveshape and frequency content of an e-

bomb as a function of ‘range.’ The device waveshape is largely unknown for a 

hypothetical weapon; therefore, the e-bomb pulse is defined based on 

reasonable approximations of existing and published “open literature” 

electromagnetic threats that are scaled to the maximum amplitude value that 

would be associated with the calculated detonation height and the geometry of 

the assumed target system. A MATLAB program, developed under a previous 

effort, is used in this part of the development to define the e-bomb weapon E-

field intensity as a function of range. 
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After defining the threat field expected from an e-bomb, as described 

above, an electromagnetic coupling and interaction program using the threat 

waveshape and models of the target system was employed to analyze terminal 

currents throughout the model.  These system currents were then converted to 

their node voltage, delivered power, or energy, at the various representative 

distributed system nodes (i.e., power, communication, network) throughout the 

model. In other words, the voltage, power, and energy formed on the electrical 

device components were calculated using terminal currents as expected to be 

induced on the cables exposed to radiated outputs from an e-bomb. 

A published, experimentally created, threshold level table appropriate for 

the node electronic components (transistors, diodes, etc.) was then used as the 

basis for evaluating the potential for upset and damage based on the analyzed 

voltage, power, and energy results obtained by the interacting model.  

All the described results are analyzed individually and collectively. The 

controlling elements such as source size, environment, and system configuration 

are inherent to the described analysis. In addition, the effects of shielding 

methods, where appropriate, are explained and folded into the results. 

Operational analysis is conducted to determine which of the controlling 

elements are the most important to ensure sustained operations of the IADS. A 

conventional weapon scenario is created for the same target system and 

probability of damage values are obtained for each system node separately. 

Similar analysis accomplished by considering conventional weapons and 

common or differential trends are identified and compared to the e-bomb model 

findings. 

Finally, operational recommendations are given to readers regarding the 

results and comparisons achieved from this study. In addition, advantages and 

disadvantages of both e-bomb and conventional attacks are provided based on 

the obtained results. 



 xx 

As a result, this study claims that with all the principles, theories, and 

procedures applied to obtain every result, it can be possible to damage or at 

least upset various types of electrical devices components in an IADS with a 

hypothetical e-bomb weapon. With respect to the e-bomb attack results, it is 

determined that the best defense is in the shielding against electromagnetic 

interference. Shielded cables in the system were significantly less affected than 

unshielded cables. 

Overall, those results and comparisons provide an idea of how to best use 

such a weapon against electronically equipped targets, along with comparing and 

contrasting e-bomb effectiveness against conventional munitions effects on the 

same target system.  
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I. INTRODUCTION  

A. SCOPE OF THE THESIS 

This thesis research seeks to characterize possible effects—upset, 

damage, burnout—of a hypothetical electromagnetic weapon (identified as e-

bomb for the remainder of this thesis) on distributed targets composed of 

electronic components. In addition, this research investigates possible effects of 

the conventional weapons on the same distributed targets to compare to the 

hypothetical e-bomb effect results. Throughout, this effort searches and analyzes 

those potential effects from the  view of a military operation’s perspective.  

The conventional weapon evaluations will include systems such as 

conventional bombs (i.e., Mark (MK) series weapons) while considering 

deployment methods, effects, and results on a target. Moreover, Desired Mean 

Point of Impact (DMPI) considerations will be studied. After analysis of these 

devices and comparing all of their advantages and disadvantages, some 

operational recommendations will be given. This operationally based analysis will 

bring out a comparison picture and let the reader view the potential utility of an 

electromagnetic weapon. 

B. MOTIVATION (WHY DIRECTED ENERGY?) 

Open source material available on the Internet reveals that some 

scientists have already theoretically conceived the basic framework for an 

electromagnetic weapon. For example, Carlo Kopp, a prominent Australian 

freelance defense analyst and academic, indicates that because of fundamental 

dependency upon the modern semiconductor devices, they are globally 

vulnerable to the attacks from some specifically designed weapons that can 

damage or destroy those semiconductor components. Prominently, those kinds 

of weapons are technically feasible and economical to build in comparison to 
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established weapons of mass destruction. Such weapons can employ a wide 

range of existing targeting and delivery techniques. These devices are 

electromagnetic weapons and the most dominant one of this weapon type is the 

electromagnetic bomb (e-bomb) (Kopp, 1996).   

Another scientist, Edl Schamiloglu, who is a professor of electrical and 

computer engineering at the University of New Mexico in Albuquerque and one of 

the leading researchers in this field, says “High Power Microwave (HPM) sources 

are maturing, and one day, in the very near future, they will help revolutionize 

how U.S. soldiers fight wars” (Abrams, 2003). Lt. Col. Terry Smith, lecturer and 

Electronic Warfare (EW) Program Officer at Naval Postgraduate School (NPS), 

implies that because of the potential advantages that these electromagnetic 

devices might offer, militaries all around the world have shown interest in this 

emerging technology. A general thought in the global military community is this: 

The wars of the future will be based on technological power. Electromagnetic 

weaponry is one of the technologies that potentially offer many tactical and 

strategic advantages, not the least of which would be their deterrent role 

preventing foreign aggression with reasonable resource expenditure (Smith, 

2009). 

Those deliberations and progresses around the world leads this study to 

search how effective an e-bomb can be against a specific group of targets from 

the view of military operations. The research will try to simulate an e-bomb attack 

against a target system including multiple, electronically equipped, DMPIs. In this 

simulation, the geometry of the attack, deployment methods and a selected 

platform will be evaluated and demonstrated. Appropriate scenarios and tactics 

will be included as well. The study will discuss whether an e-bomb can be more 

practical than conventional weaponry. It will conclude with an analysis of the 

advantages and disadvantages of DE weapons compared to conventional 

munitions. In addition, this study will analyze the use of e-bomb against multiple 

DMPIs simultaneously from the operational perspective of causing no collateral 

damage.  



 3 

It is obvious that Directed Energy Weapons (DEW) are at least potentially 

going to play important roles in future warfare. The use of DEW will lead warfare 

considerations into a new dimension, and it will cause all the current strategies 

and tactics to be rearranged. 

C. WHAT IS AN E-BOMB? 

In order to be able to understand what an e-bomb is,  it is needed to begin 

with an understanding of what Electromagnetic Pulse (EMP) is—an extremely 

concentrated instantaneous energy field that can disrupt or overload various 

electrical systems and microcircuits sensitive to power surges (Wilson, 2006).  

EMP is typically related to one of the weapons’ effects from a nuclear burst, but it 

can be used to describe any very intense, very rapid, burst of energy propagated 

radially from an emitter. 

An e-bomb is a kind of weapon that uses the electromagnetic spectrum, 

emitting short, but very high power, microwave burst pulses that spikes into the 

gigawatts power range lasting for only microseconds causing some specific 

levels of damage by emitting enough energy to overwhelm electronic devices 

and their components (Pace, 2007). From this definition, an e-bomb can be 

viewed as a kind of EMP weapon.   

It is important for the reader to understand that there is no officially 

reported example of an e-bomb in the world, nor is it possible to identify any 

officially recognized operational testing of an e-bomb. Because this information is 

unavailable in any open-literature environment, the e-bomb for discussion in this 

thesis is a “hypothetical e-bomb.” 

There are various kinds of military targets which an e-bomb can potentially 

be used against. Some important examples of these can include military 

functions related to telecommunications systems, manufacturing systems, 

computers used in data processing systems, displays, equipment that is 

embedded in the military such as signal processors, electronic flight controls, 
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digital engine control systems and industrial control applications, including road 

and rail signaling (Kopp, 1996).  These examples are in Figure 1.  

Considering the typically deployed configuration of these potential targets, 

they are usually gathered in a specific area of operational functions, so an e-

bomb can be used against and can affect all of them with just one pulse at a 

time.   

 
Figure 1.   Feasible  E-bomb Targets (From: Pace, 2007) 

Normally, an e-bomb does cause harm or injury against any human or any 

lives since its pulse duration is very short. In other words, it is non-lethal and a 

threat only to operating electronic systems. This provides the opportunity to 

attack targets against which conventional weapons do very poorly such as, 

targeting an enemy among civilian neighborhoods using human shields 
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(Pace, 2007). Therefore, there is the potential advantage of no collateral damage 

unless the e-bomb affects a facility such as a hospital or any other equipment, 

related to human life. 

On the other hand, there are some other important things to consider 

when using an e-bomb against those potential targets, from the aspect of an 

objective to inflict damage. These non-ideal considerations include factors such 

as triggering undesirable environmental conditions (rain and thick clouds), which 

can affect the propagation of the electromagnetic wave (and reduce its 

amplitude), shielded components of the target system, which provides an 

inherent protection layer against electromagnetic pulse 

Chapter II provides further information about an e-bomb including its 

delivery system, possible effects on targets, coupling methods, and shielding 

associated with an e-bomb. 

D. THE BENEFIT OF THE RESEARCH 

This study will help to understand the use of an electromagnetic weapon 

and its effect on representative targets. In addition, it will provide an opportunity 

to see the difference between using an electromagnetic weapon and  using 

conventional weapons against a specific target from an operational view. 

The research will provide a concept of an electromagnetic weapon. It will 

focus on a hypothetical e-bomb as a type of electromagnetic pulse weapon. A 

theoretical application and engagement scenario, supported by two computer 

programs, is employed to measure the hypothetical e-bomb effects on a target, 

i.e., Integrated Air Defense System (IADS) for realistic results. 

In order to best match a real-world operating scenario, this study 

incorporates the features and effects of real field components and environmental 

considerations as a result of coupling efficiency on the DMPIs of the target 

system. Those real-world coupling factors include soil conductivity, permittivity, 
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cable length and thickness, and cable height above ground. Moreover, 

hypothetical e-bomb parameters, i.e., incident angle, frequency, amplitude, and 

coupling efficiency must also be applied. 

The described engagement scenario will be used to show how those 

sensitive electronic components and the cables connecting each nodes of IADS  

can be exposed to the effects of the hypothetical e-bomb. Moreover, the results 

support evaluation of which parameters or conditions have a positive impact and 

which have a negative impact on the results.  

All of these results provide an opportunity to understand how an e-bomb 

can be used operationally in a battlefield, and how it can be compared to the 

conventional munitions with respect to their advantages, disadvantages, and 

effects on electronically equipped targets. The comparison of those effects, 

advantages and disadvantages, will provide an opportunity to make a decision on 

method should be used in  military operations against indicated targets.   

E. RESEARCH ROADMAP 

The research roadmap description of this study is comprehensively 

explained step by step below and those steps can also be viewed in Figure 2  

following the steps. The Figure and explanations provide a quick understanding 

of the whole process of the study. 

Step 1. A simple topographical system of interest transmission-line 

coupling model will be created as a target that consists of some mission-

essential distributed equipment nodes.  This model will be developed to resemble 

a mobile, deployed, IADS or Command Control Communications Computers and 

Intelligence (C4I) system.  

Step 2. A configuration of the model will be outlined and each node 

of the target model will be defined, including functions and specifications of each 

node Distances between each other will be indicated. Specifications and 

configurations of each cable connecting each node will be included.   
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Step 3. Appropriate environmental details of the model: conductivity 

(σ), permittivity (ε), polarization, load configurations etc. will be researched in 

order to better describe true-fielded systems. 

Step 4. A range (altitude over the target) of interest will be decided 

based on the desired frequency range, antenna diameter, and the geometry for 

the deployment platform source. This altitude, in-turn, will be used to establish 

the intensity level for illumination of the topographical model while considering 

the corresponding weapons beam width and it’s spectral capabilities. 

Step 5. The hypothetical e-bomb created pulse, that is used to 

interact with the modeled system, will be defined from first principles. The pulse 

will be developed and formatted as the expected amplitude, waveshape and 

frequency content of an e-bomb as a function of ‘range’. The device waveshape 

is unknown for a hypothetical weapon; therefore, it will be defined based on 

reasonable approximations of existing electromagnetic threats that are scaled to 

the maximum value amplitude of the hypothetical e-bomb ‘Field Strength’. A 

MATLAB program will be used in this part of the method to define the weapon E-

field intensity as a function of range. 

Step 6. Defining the threat field expected from an e-bomb, as 

described previously, an electromagnetic coupling and interaction program using 

the target field strength (E), and models of the target system will be employed to 

analyze terminal current values throughout the model.  

Step 7. These system currents will be converted to the delivered 

power, or energy, at representative distributed system nodes (power, 

communication, network, etc.). 

Step 8. The threshold values of the voltage, power, and energy 

formed on the electronic components (transistors, diodes, etc.) at each node, 

within their modeled environments, will be searched and identified, for upset or 

burnout threshold level purposes.  
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Step 9. Those induced powers from the interacting model will be 

compared to those power threshold levels to determine their potential for either 

upset or burnout.  

Step 10. All the results will be analyzed. The controlling elements like 

source size, environment, and system configuration will be identified.  

Step 11. Operational analysis will be conducted to determine which of 

the controlling elements are the most important to ensured operations of the 

IADS.  

Step 12. Similar analysis will be accomplished by considering 

conventional weapons and common or differential trends will be identified. 

Step 13. Finally, operational recommendations will be given to 

readers regarding to the results and comparisons achieved from the study. 

 

 
Figure 2.   Research Roadmap 
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II. ASSESSMENT SCENARIO OVERVIEW 

This chapter begins with an introduction and examination of terms and 

definitions involved in this study. Following that, possible systems of interest as 

targets, various threat models, the attack geometry, modeling, and 

electromagnetic coupling methods at the very core of this study are covered 

broadly. Included are some outputs out of the study demonstrating range 

between the best and worse cases. Selected target system and the threat model 

are explained specifically. 

A. RESEARCH PRINCIPLES 

Provided in this section, basic definitions related to the study. The section 

covers basic concepts and some explanations about Directed Energy (DE), High 

Power Microwave (HPM) and HPM Weapons. In addition, some DE use 

examples available in open literature are provided in this section. 

1. Basic Definitions 

a. Directed Energy  

An umbrella term covering technologies that relate to the 
production of a beam of concentrated electromagnetic energy or 
atomic or subatomic particles. (JP1-02 DoD Dictionary of Military 
and Associated terms) 

Some known directed energy types are counted as; High-Energy 

Lasers (HEL), Charged Particle Beams (CPB), Neutral Particle Beams (NPB), 

and High Power Microwave (HPM) (Schleher, 1999). Among those energy 

sources, only HPM were investigated in this study. Using those energy sources, 

some special weapons can be produced, as it will be covered later in this section. 
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b. Directed-Energy Weapon (DEW) 

A system using directed energy primarily as a direct means to 
damage or destroy enemy equipment, facilities, and personnel. 
(JP1-02 DoD Dictionary of Military and Associated terms) 

Since the only interest of this study will be HPM weapons, the 

possible effects of a hypothetical e-bomb on electronically equipped targets was 

examined using HPM principles.   

c. Directed-Energy Warfare  

Military action involving the use of directed-energy weapons, 
devices, and countermeasures to either cause direct damage or 
destruction of enemy equipment, facilities, and personnel, or to 
determine, exploit, reduce, or prevent hostile use of the 
electromagnetic spectrum through damage, destruction, and 
disruption. It also includes actions taken to protect friendly 
equipment, facilities, and personnel, as well as retain friendly use of 
the electromagnetic spectrum. (JP1-02 DoD Dictionary of Miltary 
and Associated terms) 

This study provides a good Directed-Energy Warfare scenario while 

searching the possible effects of an e-bomb on an electronically equipped target. 

In addition, the e-bomb outputs were compared to a conventional attack scenario 

against the same target. Both of the attack’s results were compared to each 

other at the end. 

d. High Power Microwave 

Microwaves can be used at moderate power levels for 

communications or for radar and are composed of very small wavelengths of 

centimeters or millimeters.  When a powerful chemical detonation is transformed 

through a special coil device, i.e., a flux compression generator, into a much 

stronger electromagnetic field, or when combining reactive chemicals or powerful 

batteries and capacitors are used, it produces High Power Microwave weapons 

(Wilson, 2006). 
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Also, HPM generates an intense shock of electromagnetic waves in 

the microwave range of frequency, which can overload electrical circuitry. The 

components of this electrical circuitry, such as metal-oxide semiconductors 

(MOS), metal semiconductor, and bipolar devices, can absorb them resulting in 

over-heated or melted devices (Abrams, 2003). 

Therefore, an HPM weapon should be the best DE weapon among 

others to give some specific damage levels to an electronically equipped target 

systems, consisting of multiple DMPIs such as IADS, which are deployed on a 

feasible territory.  

2. Directed Energy and High Power Microwave Weapons (HPMW) 

It is possible to create some specially designed weapons out of DE types, 

such as HEL, CPB, NPB, and HPM, previously mentioned. The most important 

feature of these weapons is that they attack at the speed of light, which helps 

defeating theater and ballistic missiles (Schleher, 1999).  

At the very basic level, the common concept of DEW is delivering a very 

large amount of stored energy, which potentially creates structural and incendiary 

damage effects on desired targets. Nevertheless, two basic problems with DEWs 

are “getting the projectile to successfully travel a useful distance to hit the target” 

and “producing useful damage effects.” HPM and HEL weapons are the most 

damaging DEW sources (Kopp, 2006). 

The use and purpose of these described electromagnetic weapons may 

vary. For example, HEL weapons should probably be used against specifically 

targeted systems, like UAVs, since they use a very narrow laser beam. HPM 

weapons should be used against distributed DMPI system nodes, as in IADS, 

which is included in this thesis.  

The interest is not only focused on single pieces of these more 

complicated systems (radar set, launch station, and transmitter terminal), but 

also on the complete end-to-end system including peripheral sensors and 
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support equipment needed to control the combat functions. The below 

advantages were identified in open-literature sources that identify possible 

effects that can be achieved from a HPM weapon (Valouch, 2003): 

 Very fast effect on the target 

 Irrespective weather conditions 

 Covering various targets with minimum information about their 

characteristics. 

 Operational attack, which causes denial of activities, neutralization, 

etc., against electronic assets. 

 Minimum collateral damage against sensitive environment either vital 

or political and means of their reuse after attack. 

Taking the use of HPM against multiple DMPIs into consideration, a 

modeling and analysis simulation effort can effectively lead investigations into the 

research that helps define what kind of affects can be attributed to those DMPIs. 

This described simulation was used to uncover some possible beneficial uses for 

these technologies. Representing a hypothetical e-bomb environment in such a 

simulation, it appeared that two methods would be the most likely candidates to 

pursue possible effects on a target like an IADS system: High-Altitude 

Electromagnetic Pulse (HEMP) and High Power Microwave (HPM). 

A high altitude nuclear detonation can cause an EMP, an instantaneous, 

intense energy field, produced in the atmosphere that is subsequently radiated to 

operating target systems.  At specific ranges, this pulse can overload or damage 

various electrical systems and microcircuits, which might be especially sensitive 

to power surges. HEMP is the name for the nuclear burst well above the earth’s 

surface.  

The physics basis as to why a high nuclear detonation causes an 

electromagnetic pulse is that the weapon burst creates gamma radiation that 
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causes an interaction with air molecules. This process is the ‘Compton Effect.’ 

Scattered electrons at high energies ionize the atmosphere, which generates a 

powerful electric field.  

As might be expected, the generation of this electric field is highly 

dependent on the earth’s magnetic field, which varies significantly from position 

to position. Therefore, the description of the HEMP field depends not only on 

height above the plane of the earth, as shown in Figure 3, but also on the 

environment where the burst occurs.  This described HEMP signal has a duration 

from its peak intensity to insignificant levels that is too short to harm (by Joulean 

heating) the human body. Nevertheless, the HEMP threat signal is a pervasive 

and potentially divesting transient that is much more effective than a lightning 

strike and can cause significant damage on operating electronic circuitry (Wilson, 

2006). 

 
Figure 3.   HEMP Affecting Area by Height of Burst (From: Wilson, 2006) 

Intense energy effects, including instantaneous electromagnetic pulses, 

similar to those described for HEMP, are also produced by High power 
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microwaves. The high-power microwave instantaneous pulses can be created 

through using special equipments that transform powerful chemicals (by reaction 

or explosion) or perhaps stored battery power into intense microwaves that can 

cause very serious damages on electronics within a much smaller footprint than 

is typically described as the effective range of HEMP (see Figure 3). 

HPM energy, however, has an advantage in that it can be focused using a 

shaped antenna, to produce intense effects within a chosen small area, in a 

limited distance. Higher-frequency waveforms are possible with HPM radiation, 

which might make it highly effective against electronic equipment, and perhaps 

more difficult to defend against. Additionally, HPM weapons are smaller in scale 

than HEMP weapons and do not require a nuclear capability (Wilson, 2006). 

It is very difficult to consider a HEMP methodology, as a weapon.  HEMP 

is too complicated to produce, requires high technology resources and expertise, 

involves significant effort to employ, and it is expensive to use. Therefore, 

researchers can instead focus on weaponeering HPM, since it is easier to 

produce, not as complicated, does not require extensive technology resources, 

and is cheaper to employ with respect to HEMP, since it can be produced using 

very basic electronic and physical components. 

Nevertheless, there are still other things to consider on how an HPM 

weapon can be applied on a candidate target as an effective threat, such as the 

hypothetical e-bomb that is the subject of this thesis. The issues to consider for 

making a hypothetical e-bomb include design of the hypothetical e-bomb, its 

deployment methods, its power source, frequency generator, antenna design and 

shape. 

Taking all of these into account, one must evaluate the effects of and 

decide on various performance parameters such as frequency selection, incident 

angle, created far field amplitude value and target specifications, i.e., cable 

diameters, ground conductivity, dielectric constant value, cable length, and cable 
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height above ground for best coupling purposes. All of those parameters will take 

the weapon research to some complicated tradeoff situations.  

Using a computer program modeling and analysis designed to calculate 

the relevant values, both physical and performance, for the weapon can provide 

some major assistance in deciding how best to choose between these tradeoff 

options. Additionally, using a model approach, the ‘worse case’ parameter values 

can be identified and used as possible conditions for situations where they might 

apply.  Significant judgment is involved in using models as described. A “worst 

case” modeling approach that produces orders of magnitude effects above any a 

reasonably expected weapon might be able to produce is of little utility.  

However, a “reasonable worst case” approach, such as is used in this study, can 

be used to address the problem above, but at the same time produce a useful 

and meaningful result. 

After deciding on those “reasonable worst case” values, one must analyze 

the achieved power level results and match them with the power threshold levels 

of the sensitive electronic components i.e., transistors, diodes etc. in each node 

of the target system to determine the impact of the hypothetical high-power 

microwave source.   

Overall, those results and comparisons can provide an idea for how best 

to use such a weapon against electronically equipped targets. Moreover, using 

such a weapon provides an opportunity for causing no blast effects and, in the 

focused mode provided an aimed output directed at the indicated target system, 

not harming humans. That means no collateral damage worries unless there is, 

again, an electronically equipped facility nearby with electronic systems that 

serve to support human critical life functions.  
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3. Some Directed Energy Applications 

There are some examples of DEWs that are laser based and 

electromagnetic based. Some of these are reported, some presented, and some 

are theoretical. 

One example is from CBS News, reported on March 25, 2003, that the 

U.S. Air Force hit an Iraqi satellite TV station with a kind of electromagnetic pulse 

device, and it caused that TV channel be out of order. By this, the US military 

achieved shutting down a propaganda source (CBS News, 2003). 

Another example is a laser weapon. Boeing recently demonstrated its 

laser gun mounted on an Avenger Combat Vehicle. That gun can shoot down a 

small Unmanned Air Vehicle (UAV) with its laser beam (Albuquerque, 2009). 

Using a focused electromagnetic beam can be a crowd control system. An 

example of that weapon is the ‘Precision Pain,’ The Humvee-mounted Active 

Denial System (ADS), which can strike from at least one-third of a mile away. 

This weapon causes a short burst of pain lasting a second or two (Shoot to Not 

Kill, 2003). 

B. SYSTEM OF INTEREST MODEL AS A TARGET 

A “system of interest” model as a potential target for an e-bomb should be 

an electronically equipped and distributed system, which may include nodes such 

as command and control systems composed of computers, electronic control 

systems, power generators, and cables connecting these nodes to each other. 

A selected system of interest model, which will represent a reasonable 

IADS, is explained in this section including its nodes, features, parameters, 

protection features against EMP, cables and cable specifications. 

1. Shielding Methods, as a Defense against HPM Weapons 

As a defense or countermeasure method against electromagnetic 

interference, therefore, against high power microwave weapons, critical systems 
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typically use some form of shielding. Those shielding methods when employed 

as a topological shield for the system are expressed in dB values. For example, a 

30 dB shielding provides 1000 times reduction on the effect of the field levels 

associated with electromagnetic interference. 

The most reliable and robust method for a high power microwave 

protection can be to completely enclose all the sensitive electronic equipments 

wholly with an electrically conductive metal enclosure (topological shield). This 

enclosing metal barrier, called Faraday Cage, prevents the effect of 

electromagnetic field interference to the sensitive equipment (Deveci, 2007).  

Shielding can be expensive though, and the expense may not be based solely on 

the dollar costs involved.  In an aircraft, for example, the addition of 

electromagnetic protection shields may add excessive weight to the aircraft 

design. 

There are other effective protection techniques against high power 

microwave weapons that can be used. Surge protective devices, which limit (by 

clamping) surge voltages to safe levels work well. The utilization of fiber optic 

cables, which contain no conductive metal, can also reduce the effect of high 

power microwave weapon. High power microwave energy couples to metallic 

objects, and the associated energy is distributed in a system through conductive 

paths, so fiber optics technology basically removes the coupling method from 

consideration.  Tactical protection methods (as simple as avoidance) can be 

considered as well. Some more protective techniques, whether, technical or 

tactical,  are (Deveci, 2007): 

 Shielding and filtering 

 Extreme care in eliminating very small openings 

 Gasketing 

 Flexible metal jackets on cables 

 Multi-layer shielding 
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 Welded structures 

 Non-metallic cables (fiber optics) 

 Minimization of metal fixtures and fastenings in non-metallic structures 

 Narrow beam antennas with minimum side lobes 

 Laser communications 

 Internal optical communications 

 Conductive foil over joints 

 Interval system usage. 

In this study, some cables in the system of interest configuration are 

assumed to have shielding while other cables are assumed to not have any 

protection against electromagnetic interference. Shielding methods of the target 

system will not be specified. Only the shielding value will be given in dB value. 

Nevertheless, it is difficult for a system to provide 100% shielding against 

high power microwave weapons because cable connections between the 

systems nodes are always present in large numbers and these conductive paths 

can expose the system to electromagnetic interference.  Another difficulty 

associated with complete topological shields is that the cables need to be 

connected to each other at some distances or they need to be connected to the 

nodes. In those connection points, possible cracks, connection failures, and worn 

out materials occur, which expose the cables to electromagnetic interference and 

penetrating the shielding. Each of these penetrations produces a potential risk to 

the integrity of the overall topological shield barrier. 

2. Possible Target Models and Selected Model for this Study 

As mentioned before, a viable target for an e-bomb could be any 

electronically equipped system of interest providing an important function or  
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operation.  For example, the target system can be an IADS, a radar system, a 

ship or any kind of C4I system. This study will examine a representative IADS as 

its system of interest model. 

Deciding on the design of the system of interest model as an IADS, a 

Patriot Missile system is taken as a reference from open sources. The selected 

system node types and number of the nodes are created with respect to that 

Patriot missile system. The patriot system node types can be seen in Figure 4. 

Some nodes in the system of interest model are omitted, and it is assumed that 

relevant nodes take on omitted node’s missions. For example, only one launch 

station is included in the created model, although there may be more than one, 

as the Patriot missile system can use up to sixteen launch systems. In addition, a 

satellite communication system that provides the required communication 

between the IADS and other friendly systems, in this scenario, is included in the 

selected model. 

 
Figure 4.   Patriot Missile System Configuration (Introduction to the Patriot) 
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“Patriot-unique equipment at the Headquarters and Headquarters 
Battery (HHB) includes the information and coordination central 
(ICC), communications relay groups (CRGs), antenna mast groups 
(AMGs), trailer mounted electric power units (EPUs), and guided 
missile transporters (GMT). The Patriot firing battery equipment 
includes the AMG, radar set (RS), engagement control station 
(ECS), truck mounted electric power plant (EPP), and up to sixteen 
launching stations (LSs). Both the battalion and firing batteries are 
equipped with a semitrailer maintenance center.” (Patriot TMD) 

Therefore, the target system for this study is a simulated realistic IADS 

configuration composed of six different, separated nodes. These nodes include 

an Engagement Command Station (ECS), Launch Station (LS), Antenna Mast 

Group (AMG), Satellite Communication (SAT COM), Radar Set (RS), and 

Electric Power Plant (EPP).  

Six was an optimum number of nodes for the subject system model 

Including more than six nodes in the system would be more complicated and 

cause the study to be hard to analyze the effects of the e-bomb on each node 

and the cables, which make the connection between them. On the other hand, 

less than six nodes in the system would not be a realistic and representative 

model, since in this case it would not provide the required elements of an IADS. 

As a result, the model configuration is evaluated as a reasonably representative 

IADS by including six operative nodes. 

The straight line sketch provided in Figure 5 shows the system nodes. It 

simulates each node type and shows distances between each node along with 

cable types and their specifications. Review of the available literature describing 

the typical deployed configuration of systems of this type determined the 

configuration for the illustrated IADS . 
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Figure 5.   System of Interest Model  

For instance, one of the criteria of the Patriot missile system for 

determining the ground/site reconnaissance or establishment for the fire control 

system  provided by Patriot Battalion and Battery Operations manual 

(Headquarters Department of Army, 2002) is, “Is the fire control area 30 meters 

by 35 meters and less then a 10-degree slope?” Therefore, the maximum 

distance between elements should be 35 meters for the fire control system. 

Some other distances between other nodes could be less than 35 meters. Figure 

6 illustrates the possible establishment configuration of the nodes and distances 

between them.  Since the fire control system takes the major part of the IADS 

configuration, the same requirement criteria was deployed to the other parts of 

the selected system of interest model. Consequently, a representative system 

can be established on a 35-meter radius territory, with an engagement control 

system (ECS) in the center.  



 22 

 
Figure 6.   Configuration of the Patriot Missile Fire Control System ( From: 

Headquarters Department of Army, 2002) 

Based on this review of the literature, three reasonable distances were 

established between each node to cover the range of possible deployment 

configurations.  These distances are 35 meters, 25 meters, and 15 meters. 

Taking possible curvatures on the longer cables into account and to be 

conservative, cable lengths used in the assessment model were 40 meters, 30 

meters, and 15 meters. Their lengths can expected to be different depending on 

the establishment geometry, i.e., distances between each other, and for the 

overall configuration of the deployed IADS as well. 

The most probable terrain for a system that uses radar should be an 

unobstructed field in order to provide the best antenna view. Because of that, the 

system of interest model should be deployed on a medium hill, and the 

environmental values that will establish electromagnetic coupling (i.e., dielectric 

constant, εr and the conductivity, σ) are shown in Table 1. 
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Table 1.   Dielectric Constant and Conductivity Values for IADS Target (From: 
Vance, 1987)  

In the Patriot missile system configuration uses various cable types such 

as interconnection points of terminal boxes are linked to Electrical Power Plant 

with power cables and control cables. They are connected to the Radar system 

with data cable. The interfacing data link to the ECS is connected via shielded 

cable to protect against Electromagnetic Interference (EMI) and EMP (Patriot 

Battalion equipment and Organization). Collocated shelter connecting cables 

include RF cables, control cables, and a prime power cable. Fiber-optic cables 

link the ECS to the local launching stations (Headquarters Department of Army, 

2002). 

Based on this Patriot missile system, the system of interest model 

components are connected to each other with representative, appropriate types 

of intra-site cabling with respect to their functional purposes. Those connection 

types and cables are signal transmission, telephone connection, power 

transmission, and network connection. This study assumed that the signal and 

network connection cables had 30 dB shielding. The power cable was a five-

wired three-phase cable that is a widely used power cable for power feed 

purposes. The telephone line was composed of two-wire parallel cable type in 

the system of interest model because of the assumption that some 

communications between the nodes were via a telephone network. The 

telephone lines in the model were a ‘two-wire parallel cable’ because they are 

broadly used in the industry for telephone networks. Other cable types used 

single pair cabling (see Figure 5).   

All of those four cable types were installed to meet the mission 

requirements of the IADS. For example, since all included transmission and 

communication lines are required, each type of the cables are laid down between 
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ECS and AMG, while only power and phone lines are laid down between ECS 

and EPP, since there is no need for signal and network communications between 

these nodes. 

The features and specifications of the target system cables vary with 

respect to their functional purpose. Therefore, their thicknesses and material 

composition differ from each other. There are various types of cable 

specifications depending on their purpose and their specifications. Research at 

the industrial product websites determined the nominal outer diameters of the 

cables used in the system of interest model. Relevant and average cable 

specifications were selected that can lead the connections, nodes, and the whole 

IADS to operate effectively. For example, based on that research, industrial 

companies provide some cable types that have a nominal outer diameter range 

of 0.26 inches to 0.47 inches. A basic telephone cable at home measures an 

outer diameter around 2.5 mm. 

In addition to their extent, the height of cables above the earth’s surface 

are established from positions reasonably close to the ground where the 

connections to the equipment nodes of the system are expected. The most 

effective coupling is most likely at these nodes. (Detailed information about this is 

in the ‘MODELING & EM COUPLING’ chapter.) 

The Patriot missile system elements are composed of trucks, trailers, 

launchers, and tractors. Their heights from the ground to their tops range from 2 

meters to 4 meters (Headquarters Department of Army, 2002). Since the cable 

connections to each element are expected to be at the bottom of their body and 

above their wheels, an average representative height is 2.5 meters except for the 

power cable that is 0.5 meters. It is more suitable for a power line to be at or near 

ground level.  

Simulated system node type characteristics, i.e., trunk height above 

ground, launcher specifications, all played an important role in determining those 

specific heights. Overall, the mentioned values were discretionally based upon 
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the system design, geometry, and physical specification requirements. Those 

values determined very close to their realistic values.  

Another consideration evaluating the cable selection is their impedance 

values. Electromagnetic energy couples to intra-site cabling and transfers energy 

to the equipment node configurations and locations at the left and right ends of 

the cable.  Left and right hand impedance values are decided based upon 

acquiring the best coupling effect values, and again, as dependent as can be 

based on their realistic values as determined by a review of the literature. 

Summarized values of the cables associated with the cable runs shown earlier in 

Figure 5 can be examined in Table 2. 

 

 
Table 2.   Cable Values of the System of Interest Model 

C. THREAT 

The previously mentioned four DEW types, indicated in open literature, 

can each be considered as a viable threat against their relevant targets.  In this 

study, however, which involves an e-bomb, the threat discussions will be limited 

to an HPM weapon.  This thesis does not address the remaining threats.  
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1. Possible Effects on Targets 

Our greatest understanding of system element susceptibilities to hostile 

electromagnetic threats comes from EMP work.  Most electronic equipments are 

vulnerable to EMP effects in well-understood ways. As an example, almost all of 

the target equipment items include metal-oxide semiconductor (MOS) devices, 

which are very sensitive to exposure to high voltage transients. MOS devices can 

sustain permanent damage with very little coupled energy. A typical voltage in 

excess of tens of volts can produce a gate breakdown effect, which effectively 

destroys the device (Kopp, 1993). 

Classifying potential e-bomb effects on targets will require a brief 

introduction to possible effects on electronic equipment.  The following 

discussion introduces the possible effects, with respect to the lethality levels, 

which require increasing coupled power for the presentation order that follows.  

a. Soft Kill 

Soft kill is a temporarily disruption in the operation of the target 

equipment or system, caused by the weapon effect. An example is any computer 

system caused to reset or transition into an unrecoverable or hung state. The 

result is a temporary loss of operation, which can seriously compromise the 

operation of any critically dependent computer system (Kopp, 1996). 

In this kill level, it is possible to regain the operational functions of 

the system by fixing it. Nevertheless, the adversary can gain important time 

needed to accomplish missions during this time. For example, the adversary can 

create a corridor for its allies if the soft killed equipment is a radar platform. 

b. Hard Kill 

Hard kill is a permanent electrical damage, to the target equipment 

or system, caused by the effect of the weapon. Hard kill necessitates either the 

repair, or the replacement, of the equipment or system. An example is a 
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computer system that has experienced damage to its power supply, peripheral 

interfaces and memory. These effects involve significant deterioration of 

operational capability and in some cases, based on severity, can render the 

equipment dependent upon this computer system inoperable for extended 

periods (Kopp, 1996). 

Unlike soft kill, a hard kill level can be applied to the systems, which 

are the desired main point of impact, and need to be destroyed operationally. 

This kill level can be applied, especially, in situations where an electronically 

equipped target has to be hit and collateral damage avoidances are primary for 

the mission. 

2. Delivery Systems and Deployment Methods 

E-bombs can be delivered to targets in several ways by using any kind of 

aircraft and UAV as a platform, which are eligible for carrying desired munitions, 

aerial bombs such as general-purpose munitions or cruise missile. This study 

used a general-purpose bomb, BLU-82, in order to meet the desired 

requirements for coupling purposes and to select a realistic deployment 

configuration. 

An e-bomb consists of both a microwave source and a power source. The 

microwave source depends on an extremely fast switching device. This could  be 

a virtual cathode oscillator (vircator) tube. In addition, feeding the e-bomb’s 

microwave source requires enormous power (gigawatts).In order to achieve that 

high power, a Flux Compression Generator (FCG) would be a good choice 

(Abrams, 2003).  

a. The Dish Antenna  

Both microwave sources and  power source devices can maximize 

the delivered energy of the e-bomb assuming they are focused and that they can 

be accommodated in the packaging volume available. Another important  
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component to consider for the design and shape of the e-bomb is its antenna, 

which improves the power transfer from the microwave source out of the weapon 

and into air (Kopp, 1996). 

Among all of the described e-bomb components, the most 

important part affecting the shape and size of the hypothetical e-bomb platform 

was the antenna. Since most conventional munitions are candidate deployment 

packages, and are cylindrical shaped, a dish antenna was picked for the best 

high-gain radiation of the e-bomb output. The diameter of the dish antenna for 

this study was dependent on the tradeoff issues of acquiring the best coupling 

purposes of the weapon along with the planned attack geometry, which will be 

discussed later. Desired coupling could be achieved and delivery systems are 

available with a cylindrical diameter of 1-meter antenna. In order to fit a 1-meter 

diameter antenna to a general-purpose bomb, as a platform for an e-bomb, that 

bomb must be slightly larger than 1 meter in diameter.  

A BLU-82 bomb, which will be analyzed later, can meet this 

requirement since it is wide enough to accommodate a 1-meter diameter dish 

antenna. The antenna can be mounted at the back 1/3 section of the bomb’s 

dome.  

The focal length of the dish antenna will need to be determined for 

radiated output calculations, as well as other important parameters associated 

with the operation of a dish antenna. In order to be able to calculate the focal 

length of a dish antenna, one needs diameter and depth values (Determining The 

Focal Length of a Parabolic Dish):  

 

  (1) 
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where 
D : Diameter of the dish antenna (m) 

c : Depth of the dish antenna (m)  

The depth of the dish antenna for this study was 0.25 meters, in 

order to meet the range of performance values commonly expected of dish 

antenna designs. In this case, the focal length of the dish antenna was 0.25 

meters. 

b. The Waveguide 

A Transverse Electric, TE10 mode, waveguide is assumed to feed 

this antenna. An example of the shape of a waveguide can be seen in Figure 7. 

The waveguide aperture physical dimensions are (a x b), and the length ‘a’ of the 

TE10 waveguide, determines the cut-off frequency value, which is an important 

performance characteristic for deciding the best far field value. The formula used 

to calculate the cut-off frequency is: 

  (2) 

 
where 

c : speed of light  (m/s) 

a : waveguide Length (m) 

There is only one variable included in the above formula, and it is 

the length, ‘a,’ of the waveguide. The cut-off frequency is inversely proportional to 

the length of the waveguide.  

Frequency content below the cutoff limit controlled by the length ‘a’ 

are not supported by the feed and will not be propagated.  Possible waveguides 

that can be used for the specified dish antenna are provided in Table 3 with their 

associated physical dimensions. More information about the waveguide is 

provided in proper places in the following sections. 
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Figure 7.   Waveguide Dimension (axb) (From: Ertekin, 2008). 

 
Table 3.   Rectangular Waveguide Specifications (From: Microwave Encyclopedia, 

2009 ) 

c. The Threat 

A theoretical design of an e-bomb is in Figure 8 along with 

identification of the principal components involved in the design and deployment 

platform.  
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Figure 8.   A Theoretical Design for an E-bomb (From: Abrams, 2003) 

Since both the power generator and a desired antenna large 

enough for the desired effect can be very bulky, integrating them to a delivery 

platform can be a difficult challenge.  Figure 8 depicts a commonly accepted 

delivery platform, i.e., general-purpose bombs, which are carried by most regular 

aircraft under their fuselage or wings.  Some weapons’ designs may require large 

platforms that can accommodate the e-bomb components, which would restrict 

the delivery system to specific aircraft. Since, the diameter of the dish antenna 

was decided as 1 meter, based on desired performance, therefore, the width of 

the bomb must be larger than 1 meter. Because of those requirements, the e-

bomb is assumed to be integrated in BLU-82 bomb since that bomb’s width is 

larger than 1 meter and its specifications are suitable for carrying such an e-

bomb.  The specifications of the BLU-82 Bomb can be seen in Table 4, and a 

picture of the system is provided in Figure 9. 

 

 
Table 4.   BLU-82 Bomb Specifications (From: BLU-82 Commando Vault, 2009 ) 
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Normally, a BLU-82 bomb is an unguided system, and it uses a 

parachute, which provides a slow glide, facing the dome of the bomb towards the 

ground, and its parachute is opened after the bomb is dropped off the host 

aircraft.  

 

 
Figure 9.   BLU-82 Bomb (Defencetalk) 

Even though BLU-82 is an unguided system, in this study, it is 

assumed that an appropriate kit is attached to BLU-82. This makes it a Precision 

Guided Munition (PGM) that replaces the parachute equipment. The weapon is 

dropped at a feasible altitude, high enough for the dome of the bomb to turn and 

face towards the ground, which leads to a 90 degree attack angle postulated for 

this delivery scenario. With this ability, the bomb will be able to detonate using a 

fuse at a desired altitude right above the target and at a height selected to ensure 

full coverage for the entire distributed target at levels that are within 3 dB of the 
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peak output of the device. A basic geometry is in Figure 10 and the ground 

footprint is conceptually within the 3 dB beamwidth of the dish antenna. 

 

 
Figure 10.   Detonation Altitude and Coverage Area (From: Abrams, 2003) 

D. GEOMETRY OF THE ATTACK 

In order to establish the attack geometry for the model of the IADS target 

and the engagement scenario, some parameter values such as frequency 

selection, and therefore wavelength, antenna diameter, beamwidth angle, had to 

be calculated based on an assumed target field extent. All of those parameter 
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values led to tradeoffs in the coupling model. For each competing parameter, the 

best and the most realistic attack geometry was chosen to meet desired coupling 

effects. 

Among the desired input parameters, only the target field radius of 35 

meters is certain because it best represents the maximum extent for a deployed 

IADS model.  All other parameters had to be calculated with appropriate formulas  

provided in the material that follows.  Figure 11 provides the attack geometry 

view of the e-bomb in this study. 

 

 
 

Figure 11.    The Attack Geometry 
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In order to select the performance spectrum of the e-bomb, required 

resolution of the fundamental dilemma that an e-bomb does not exist, so its 

spectral content is unknowable.  The frequency band for the hypothetical e-bomb 

in this study adopts a ‘Double Exponential E-Field Spectrum,’ associated with an 

unclassified representation of HEMP.  This selection is a low-risk approach that 

relies on a known and modeled hostile electromagnetic waveshape.  Detailed 

information about the unclassified HEMP threat waveshape that has been used 

can be found in Appendix.  

The EMP threat described has significant content at low frequencies (1 to 

100 MHz) and does not decay to insignificant levels until well above 1 GHz.  At 

the low end, the e-bomb frequency band was established by the maximum extent 

of the delivery system and was determined by calculating the cutoff frequency for 

the feed waveguide.  At wavelengths longer than the feed waveguide (i.e., lower 

in frequency), there will be no propagated field in the guide. The cutoff frequency 

value is inversely proportional to the length of the selected waveguide length, (a), 

and it can be calculated by equation 2  

In fact, since the frequency band adopts a ‘Double Exponential E-Field 

Spectrum’ in this study, the lower frequencies are useful for the e-bomb effect on 

the target, and it is desired for the best coupling purposes for such an e-bomb 

design. In the double exponential E-Field spectrum, as shown in Figure 12, lower 

frequencies correspond to higher E-Field values, which provides more coupling 

effects on the target field.  

Nevertheless, the specifications of the e-bomb are limited to feed longer 

lengths of the waveguide. This limitation withholds the use of major part of the E-

Field amplitude. Therefore, a reasonable waveguide, which provides the less cut-

off frequency, was chosen as feasible for the specifications of the e-bomb to feed 

this waveguide. Because of that, WR1150 type is the best-fit design waveguide 

for the e-bomb. The specifications of WR1150 waveguide are shown in Table 3. 
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With respect to the length of WR1150 waveguide, the cut-off frequency of the e-

bomb is calculated as 510MHz, and this is used in the other calculations of the 

study. 

 
Figure 12.   Double Exponential Pulse Spectrum 

The main objective of the attack geometry shown in Figure 11 is to 

calculate the detonation altitude (h). Since the target extent radius is known (35 

meters), the 3 dB beamwidth (θ) angle associated with the dish antenna has to 

be known in order to be able to calculate the detonation altitude. 

A rule of thumb formula to calculate a dish antenna 3dB beamwidth angle 

is shown in equation 3: 

  (3) 

 
 

Cut-off freq  
510 MHz 
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where 

θ : 3dB Beamwidth Angle (degrees) 

λ : Wavelength (m) 

D : Dish Antenna Diameter (m) 

 For such a situation, that angle is expected to be very small for a dish 

antenna. Dividing (θ) by two so that the geometry of the attack scenario can be 

determined, does not make a big difference for computing the tangent value of 

(θ). For this particular case, in order to be more precise in values, equation 3 can 

be written with respect to (θ) angle, as: 

                                                   

  (4) 

Since,  

  (5) 
    

 and 

  (6) 

 

Equation 3 can be modified as: 

  

  (7)                                            

 

After calculating that angle, the detonation altitude can be calculated by 

using the tangent rule. Here, in this formula, the diameter of the dish antenna (D) 

is known. It is 1 meter. However, the frequency (f) can be any value among the 
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frequency bandwidth that the radiated system supports. Therefore, the selected 

frequencies have the main effect on the 3dB beamwidth angle and consequently 

on the detonation altitude. The tangent formula to calculate the detonation 

altitude for this particular case is: 

  

  (8)                                          

 

Out of all those formulas, it can easily be understood that the higher the 

frequency, the higher the detonation altitude is needed. However, a high altitude 

is not desired the far E-Field amplitude on the target. The far E-Field amplitude is 

inversely proportional to the distance (altitude in this case). Therefore, from an 

attack engagement, the minimum height possible to illuminate the entire target 

object is needed. And again, the lowest altitude is limited by the cut-off 

frequency. Figure 13 outlines the altitude and frequency relations used in this 

study.  
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Figure 13.   Altitude vs. Frequency Outline 

Cut-off  
Frequency 
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III. MODELING & ELECTROMAGNETIC COUPLING 

A. COUPLING METHODS 

The main effect of the electromagnetic field produced by an e-bomb is 

coupling with interconnecting lines and cables that integrate all the nodes into a 

system.  The model that represents an IADS stimulates voltages and currents 

created by the electromagnetic field environment. There are many studies that 

attempt to find computing methods for describing these voltages and currents. 

The goal of those studies is either to analyze system susceptibility thresholds or 

to find the most robust method for reducing effects of the coupled 

electromagnetic field (Ianoz, 2008). 

The effect of an incident electromagnetic field on an electronically 

equipped device within the target may be defined in terms of the coupling to that 

device and its microwave threshold of disturbance (e.g., stimulus that causes a 

change of state). For any kind of EMP or e-bomb weapon, the microwave power 

or stress applied to the device can be calculated by means of the coupling 

through a reasonable representation of system topology. The disturbance 

threshold of the device provides an indication of the strength of the device 

against the microwaves without changing state. After measuring coupling and 

disturbance thresholds, one can better calculate the threshold of disturbance for 

the device for system exposure to the weapon. The system susceptibility and the 

probability of effect, such as upset or damage, can be estimated with probabilistic 

models for stress (the level of coupled field) and strength (the effect that field 

causes) (Zacharias, 1992).  

The Defense Nuclear Agency (DNA) has previously published a useful 

threshold level chart, shown in Figure 14, for various kinds of electronic 

components. The bars on this figure represent the possible damage occurrences 

on the device when exposed to corresponding power levels. This chart was 

created from experimental results of damage occurrences from injection testing 
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(numerous trials) with standard waveforms. As depicted in the chart, power levels 

corresponding to the bars for each device can lead that device to serious 

damage results. In this particular case, the goal of an EMP weapon or e-bomb 

should be achieving those threshold levels as possible as it can. More 

information about this issue can be found in Chapter V, Damage Assessment. 

 
Figure 14.   Damage Threshold Power Range of Representative Electronic 

Components (From: DNA, 1986) 

When an illuminating electromagnetic field induces current and voltages in 

the operating system electronic circuits at levels that are comparable to the 

normal operating signals, a temporary malfunction can possibly occur and when 

these induced stresses are at higher levels, those stresses can possibly produce 

joulian heating to the extent that permanent damage can occur (Ertekin, 2008). 

It is known, and has been demonstrated, through many system-level tests 

that an EMP explosion will result a high voltage electrical spike propagating 
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along the exposed conductive cables. If the high voltage is sufficiently intense, it 

can produce breakdown effects on semiconductors. Moreover, if its intensity is 

high enough, then it can produce thermal damage effects on conductive 

materials. The proportion of the delivered power, which is coupled to target, can 

measure the coupling efficiency. This proportion may be expected to vary 

significantly due to difference in wiring geometry and shielding performance 

(Kopp, 1996). 

Two fundamental coupling methods  found in open literature are: 

 Front Door Coupling 

 Back Door Coupling 

Only the Back Door Coupling will be covered in this study since it has 

some types of cables that are connecting the nodes to each other.  Back door 

coupling is generally an unexpected disturbance while front door coupling (such 

as the in-band reception on an HF receiver) generally has amplitude and content 

that are within the system design parameters. 

1. Front Door Coupling 

Front door denotes coupling through intentional receptors for 
electromagnetic energy such as antennas and sensors; power 
flows through transmission lines designed for that purpose and 
terminates in a detector or receiver. (Benford, Swegle and 
Schamiloglu, 2007) 

This method does not apply to this study since the e-bomb created E-Field 

is not aimed at any antennas or sensors on the target system (See Figure 15). 

Therefore, the coupling method in this study cannot be associated with front door 

coupling method. In addition, other technical considerations might be needed in 

order to couple an EMP to an antenna or sensor. 
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Figure 15.   Front Door Coupling (From: Pace, 2007) 

2. Back Door Coupling 

Backdoor denotes coupling through apertures intended for other 
purposes or incidental to the construction of the target system. 
Backdoor coupling paths include seams, cracks, hatches, access 
panels, windows, doors, and unshielded or improperly shielded 
wires. (Benford, Swegle and Schamiloglu, 2007) 

 
Figure 16.   Back Door Coupling (From: Pace, 2007) 
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The backdoor coupling method is more feasible for the e-bomb scenario 

since the EMP is direct or via some apertures exposing the wires at the potential 

target system (See Figure 16). Because, the wiring and electronic equipments 

are vulnerable to electromagnetic interference and electromagnetic pulse effects, 

especially when they are not shielded against them, this method is the best fit 

and will be used in this study. 

B. MODEL COUPLING RESULTS AND EVALUATIONS 

The CEMPAT transmission-line coupling calculation program is used in 

this study for determining the best data,determining the roles that specific 

parameters have on the coupling event, and for calculating the induced voltages 

and currents on the cables of the system using those best values. Detailed 

information about the principles used in the CEMPAT analysis program can be 

found in Appendix. 

The data that are user-entered into the CEMPAT program to calculate the 

induced voltages and currents on the cables are:  

 Cable diameter,  

 Cable length,  

 Cable height above the ground,  

 Incident angle,  

 Driving field function  : Double exponential pulse,  

 Loading    : Impedance values, 

 Driving field    : High altitude, overhead  

 Soil conditions on the target field : Dielectric constant and finite  

       ground conductivity,  

 Observation point   : Measurement point, which is  

       always at the target nodes.  
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Each of those data affecting the electromagnetic coupling to the system 

cables are candidates for producing coupling data. For this wide domain of 

possible parameter values, some suitable values were needed and variation 

analysis of each data parameters was evaluated using the CEMPAT program to 

find the best value for each data.  Best, in this case, means determining the one 

parameter value that helps optimizing coupling results to their highest possible 

values.  

In order to perform this variation of parameters investigation, some 

reasonable data parameters were first picked based on either best practice or 

general familiarity with expected coupling levels and a ‘Base Cable Configuration’ 

created for reference. Those data parameters can be seen in Table 5. 

 

 
Table 5.   Base Cable Configuration Data Parameters 

After establishing the base configuration, the CEMPAT program was run 

for moderate variations of other excluding parameter values to test each variation 

response for the best resulting coupled current. (Basic configuration data 

parameters were tested by exchanging them one-by-one with other parameters 

and judging the effect on the resulting current).  Independent parameter variation 

effects were assumed throughout this evaluation to simplify the analysis (i.e., the 

data were varied one at a time, but not more).  

The transmission line medium and the base cable configuration can be 

seen in Figure 17. The transmission line is exposed to the E threat, created by 

the e-bomb, with a 90 degrees incident angle (Θ). In addition, it has a height 

above earth ground composed of conductivity (σ) and dielectric constant (ε). 

Matched impedance values are used at grounded both ends based upon the  
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cable height and diameter. The coupling measurement is observed by the 

CEMPAT program at the right end of the transmission line, indicated with an 

arrow.   

 
Figure 17.   Transmission Line Configuration 

Outputs of the baseline parameter values out of CEMPAT program run 

can be seen in Table 6 and the parameters used are scalars representing 

response features of the coupled current.  The scalars used in Table 6 are called 

waveform norm attributes and are briefly described in material that follows and 

further described in the Appendix. 

 

 
Table 6.   Outputs of the baseline parameter values 
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Following the baseline parameters run, the CEMPAT program was run for 

each slightly modified baseline configuration, and results tables, for each run, 

were created consisting of those model outputs results. All unvaried outputs on 

the table were matched to the baseline configuration, and the best (highest) 

resulting coupled current value was picked to be used on the real run with the 

IADS topological model. The CEMPAT program outputs, i.e., threat electric field, 

coupled voltages & currents, are available as ASCII text files in time, frequency 

and in impulse-function formatted outputs.  A time domain representation 

example for the ground-interacted electric field LAN cable current response is 

shown in Figure 18. 

 
Figure 18.   Time Response Plot of Far E-Field Coupling to a Cable 

Detailed information about the CEMPAT program outputs related to 

coupling can be found in Appendix. They are briefly described here:  

PAA : Peak Absolute Amplitude, indicates the size of the response 

PAD : Peak Absolute Derivative, indicates the variation in the response 

PAI : Peak Absolute Impulse, indicates the absolute value of the 

content (area under the curve) of the response 
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RI : Rectified Impulse, indicates the value of the rectified area under 

the curve of the response 

RAI : Root Action Integral, indicates the square root of the normalized 

energy of the response. 

As can be analyzed on the time response plot shown in Figure 18, peaks 

and absolute values of under-curve integration are the most beneficial waveform 

metrics for comparing the responses and determining best coupling purposes. 

These two scalars provide information related to the size of the coupled signal 

and its energy content. They are both directly related to the potential for upset or 

damage that might be caused.  The higher those values, the more coupling effect 

can be expected to be achieved for a specific cable and node termination 

configuration. Since they best describe the important effects, all output plots for 

current responses in this report will only use the Peak Absolute Amplitude (PAA) 

and Root Action Integral (RAI) scalars to capture the major coupling assessment 

results of interest in this study.  

Each data parameter determination table that follows will identify the 

difference in response norm attributes between the run outputs with respect to 

the range of parameter values considered reasonable. By this, the ratio of 

variation difference vs. output results can be examined, as can be depicted 

through these response scalars. The largest responder is identified and shown 

as a Highlighted row entry in each table. 

1. Cable Diameter Determination 

 
Table 7.   Cable Diameter Determination Test Results.  
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From the data shown in Table 7, it is clear that as the cable diameter 

increases, the response scalars indicate that higher PAA and RAI values are to 

be expected.  This finding led to a decision to use the largest possible diameter 

cable that could be found from a literature search of a fielded system cables for 

each type (power, signal, LAN) of cable to ensure that is supporting the largest 

response a possible upper bound conditions.  

2. Cable Length Determination 

 
Table 8.   Cable Length Determination Test Results 

From the data shown in Table 8, as the cable length increases, the current 

response metrics indicate a higher PAA and RAI value. Nevertheless, there is an 

exception to that direct proportionality relation. After a specific length is achieved, 

the PAA value does not increase further. This is a known physical relationship for 

true cable coupling that is called the integration length of the cable.  The peak 

value of the cable is expected to increase with increasing length up to the 

integration length.  As Table 8 indicates, the integration length for this cable is 

just about 45 meters.  For lengths exceeding 45 meters, the PAA value does not 

increase any further. From an analysis and modeling perspective, these data 

indicate that the target system cabling needs to be no longer than 45 meters. 

3. Cable Height above the Ground Determination 

 
Table 9.   Height Above the Ground Determination Test Results 
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From the data shown in Table 9, as the height above the ground 

increases, the response of the CEMPAT program indicates that higher PAA and 

RAI values will result. As described before, a representative height decision for 

each cable of the system depends on the target nodes characteristics like their 

height above the ground along with the shape and configuration of a specific 

node.  

One possible reason for low peak values at very low cabling heights is that 

coupling relates to the total field near an imperfect ground.  As is well known, the 

electric field at the plane of the ground must be zero, so reduced coupling at 

lower heights is expected.  A cable positioned too close to the ground would be 

unlikely to couple large surface currents for large distances. This is why cables 

are buried in survivable communications configurations.  

4. Incident Angle Determination 

 
Table 10.   Incident Angle Determination Test Results 

The data in Table 10 identifies the response characteristics of the baseline 

cable as the angle of incidence for the horizontally polarized threat field changes.  

The indicated angle is relative to the cable run, or the elevation angle.  The 

largest PAA response of the CEMPAT program to the incident angle 

determination is centered around 60 degrees (60 +/- 10). There is a significant 

drop below 30 degrees. Even though the PAA value is reducing somewhat above 

60 degrees, it is a slight reduction and so is not expected to make a major 

difference between 60 and 90 degrees. 

On the other hand, examining the RAI value, it has the same response 

with PAA at less than 30 degrees while it keeps increasing above 60 degrees. 
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However, 90 degrees, which is a broadside incident, is picked out of the 

incident angle determination test since decided threat model and the bomb drop 

altitude requires it to be so from a practical perspective. Nevertheless, it is 

obvious that there is no big loss by using a 90-degree incident angle vice 60 

degrees.  

5. Load Determination 

 
Table 11.   Loading Determination Test Results 

Table 11 indicates the results obtained when loading the basis cable with 

a variety of different termination configurations.  The largest current result for the 

transmission line and loading came out of the one end short-circuited 

configuration. It is likely that the other end of the cable is loaded with the cable 

characteristic impedance for normal cases as it is used to connect to terminal 

equipment. According to those results, signal cable and LAN cables are modeled 

to issue the characteristic impedance (matched) on the left side and the right 

hand is a very low impedance (0.2 ohms). For power cabling, it is more likely 

expected to be not a characteristic impedance but a low impedance value to 

ensure good grounding and current returns. Therefore, 2 ohms arbitrarily picked 

for its left-hand side load. Finally, for the telephone line it was decided to be a 

two-wire line (parallel wire) cable and to establish matched impedance for both 

ends, just as it would be expected to be configured in the real conditions. 

The general formulas to calculate the characteristic impedances of the 

LAN and signal line cabling can be found from the common-mode cable 

impedance shown in equation 9 



 53 

  

  (9) 

 
where 

h : Height above the ground 

a : Radius of the cable thickness 

 

And for the two wire balanced telephone cable in equation 10 (Inan and 

Inan, 2000). 

 

  (10) 

 
where 

d : Distance between cables 

a : Radius of the cable thickness 

  
The LAN cable, signal cable, and telephone cable characteristic 

impedances as calculated with the corresponding formulas identified above are: 

456 ohms, 331 ohms, and 193 ohms, respectively. Each of these impedance 

values was analytically confirmed (at least approximately) by establishing a 

model of each cable type and forming Thevenin impedance from a ratio of the 

open-circuited voltage to the short-circuited current (the average of the ratio was 

the Thevenin impedance). 

The reason that the cable impedances are composed of only resistance is 

because reactance configured on these loads, although attempted, had no effect 

on the PAA and RAI values. The results out of the CEMPAT program regarding 

the capacitance trials, can be seen in Table 12. 
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Table 12.   Capacitance Determinations 

6. Soil Conditions on the Target Field: Dielectric Constant and 
Finite Ground Conductivity Determination 

Since the system of interest model was designed for deployment on a 

medium hill to represent the expected IADS field configuration, the dielectric 

constant and the finite ground conductivity effects on coupled currents were 

evaluated using the values depicted in Table 1. For study purposes and 

examining their effects on coupling, the CEMPAT program was run over a 

reasonable range of possible values to determine the impact on resulting stress.  

 

 
Table 13.   Dielectric Constant Determination Test Results 

As can be seen in Table 13, there is not a major difference between the 

values for both PAA and RAI. They are almost identical to each other. However, 

the analysis results show that the PAA and RAI values are inversely proportional 

to tested dielectric constant values (i.e., the largest current amplitude results from 

the smallest dielectric constant).   
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Table 14.   Finite Ground Conductivity Determination Test Results 

Table 14 shows that the PAA and RAI values are inversely proportional 

with analyzed finite ground conductivity values as well. The CEMPAT program 

was run for three dielectric constant values, each one is a thousand times bigger 

than the previous one, and the output results show that the more conductive the 

ground, the more shorting out of the threat magnetic field is to be expected.  

7. Driving Field Function and Driving Field 

The double-exponential pulse used in the CEMPAT program is shown in 

equation 11, which follows.  The user-selectable α and β values are chosen to 

replicate the temporal and spectral content of an unclassified representation of 

HEMP (See Appendix) and as was discussed earlier in this report, the amplitude 

for the e-bomb was determined by analysis.  A HEMP waveform was selected as 

a representative “reasonable worst-case” condition that would represent an e-

bomb.  The amplitude, however, was scaled to best represent the expected e-

bomb outputs under the conditions of the attack scenario previously shown in 

Figure 11.  To derive the e-bomb field amplitude a previously developed NPS 

student MATLAB program (Ertekin, 2008) was used  which calculates far-field 

electric field as a function of range for three hypothetical classes of e-bombs (off-

the-shelf, moderate output, an a high-output device). Detailed information how 

the specific amplitude value was determined is discussed in ‘The Scenarios and 

Bounding Cases” section of this study.  

 

  (11) 
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Where 

 :  (V/m)   

α :  1/s 

β :  1/s 

ω : . 

8. Overall Determination Results 

The best determined parameters from the previous analyses sets 

establishes the configuration details which optimize coupling results to their 

highest possible values, out of the above boldfaced determining results tables 

are gathered and can be observed in Table 15.  This table constitutes the 

“reasonable worst case” conditions needed to determine delivered currents, 

voltages and power at the modeled IADS nodes. 

 

 
Table 15.   Overall Determination Results 
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IV. THE SCENARIOS AND BOUNDING CASES 

The e-bomb scenario and conventional weapon scenario will be 

introduced in this chapter along with their performance and results based upon 

the CEMPAT program, MATLAB program and a special Unclassified 

weaponeering calculations program, Joint Munitions Effectiveness Manual 

(JMEM). 

A. THE E-BOMB SCENARIO 

In this section, relations between the geometry, frequency, and E-Field will 

be described. These relations will be shown based upon some formulas and the 

far E-Field value will be determined according to the calculated results. Following 

this determination, the CEMPAT program output results, which are created by a 

run including the best determination values along with that E-Field value, will be 

shown in a table, summarizing the effects of the e-bomb on the selected system 

of interest.   

1. Geometry and Frequency Considerations 

The geometry, frequency, and E-Field relations will be outlined here in 

details along with some formulas. 

a. The Far E-Field  

The far E-Field amplitude value of the double exponential pulse is 

required that would be expected to be produced by the hypothetical e-bomb. 

That value is determined by using a previously developed MATLAB program that 

calculates the E-field with a set of descriptive formulas that extend the fields in 

the waveguide to those that would drive the dish antenna, and finally be 

projected from the aperture plane to the far field. The E (far field) formula can be 

derived in that order as follows (Ertekin, 2008): 
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  (12)                                 

 

where  

 : The waveguide impedance in TE10 mode (Ω) 

 : Wave impedance of free space ( ) 

 : Operating wavelength ( , where the c is the  

    speed of light in free space, 3x108 m/s) (m) 

 : Larger dimension of the waveguide (m). 

 

Once the model waveguide impedance is determined, the peak 

electric field (E-field) in the guide can be approximated by equation 13: 

 

  (13) 

 
where 

  : Model impedance of waveguide (Ω) 

  : Average power of HPM source (Watts) 

  : Larger dimension of the waveguide (m) 

  : Smaller dimension of the waveguide (m). 
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A reasonable value of average power was arbitrarily determined as 

20 Mega Watts, which is a suitable value for selected power generator of the e-

bomb.   

Using a parabolic dish antenna, like the one in Figure 19, the peak 

electric field at the aperture can be estimated by the focal length of the antenna 

without using its dimensions. 

  (14) 

 

 

Figure 19.   Details of the Proposed Parabolic Dish Antenna (From: Ertekin, 2008) 

Once the electric field at the aperture of the antenna is found, the 

far field parameters for the peak electric field on the antenna boresight may then 

be estimated by equation 15. 

  (15)    
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where 
   : Target distance from the e-bomb (m) 

 (F)  : E-field strength from the e-bomb at the  

      distance (V/m) 

A   :  for the parabolic antenna (m2). 

Out of this field-defining MATLAB program, an E-field vs. distance 

plot was created.  Among the inputs of the program, only the frequency value is 

variable and others are either selected or decided before, based upon the best 

coupling considerations. The output of the program is a plot mapping distance vs. 

range (altitude in the case of the vertically delivered e-bomb). Observation of 

Figure 20 shows that the electric field is inversely proportional to the range away 

from the antenna (as expected).  The described program output can be used at a 

specific range to designate the value of the expected E-field at that range (the 

detonation altitude) that might be produced by an e-bomb.  

 
Figure 20.   E-field vs. Range (Altitude) Plot Example 
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A : The Dish Antenna Area (m2) 

F : Focal Length of the Dish Antenna (m) 

a : Length of  WR1150 waveguide (m) 

b : Height of WR1150 waveguide (m) 

f : Frequency (Hz)   

 
As an example run to be illustrated in here, the program was run for 

510 MHz, which is the cut-off frequency of the e-bomb that WR1150 waveguide 

provides, and Figure 20 was created as a result of the MATLAB program run. At 

this frequency, the e-bomb creates a 9 kV/m far E-Field value at 109 meters 

altitude, which is in the middle of the curve on the plot. This E-Field curve when 

evaluated at a different point on this range curve produces for example a 10.58 

kV/m field strength at 93 meters altitude. 

b. Frequency and Altitude 

Replacing the components in the E (Far Field) formula with their 

equivalents it can be revised as: 

  

  (16) 

 
Where: 

A : The Dish Antenna Area (m2) 

F : Focal Length of the Dish Antenna (m) 

a : Length of  waveguide (m) 

b : Height of  waveguide (m) 

f : Frequency (Hz) 
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c : Speed of light (m/s) 

r : Range (Altitude) (m). 

 

This form of the formula lets one to see the effects of each 

component to the far E-field. A, b, a, F components are determined and c 

component is constant in the formula while f and r components are variable. The 

major effect to the E-field comes from the operating frequency since it has a 

squared effect, and it is directly proportional to the waveguide E-field. On the 

other hand, the distance (detonation altitude) from the weapon to the target is 

inversely proportional to the E-field, as would be expected.  

Another consideration is the relation between frequency and 

distance, as we can recall from the ‘Geometry of the Attack’ section. The 

operating frequency is directly proportional to the distance.   

c. The Far E-Field Determination 

Based on the information given above, the MATLAB program was 

run to predict e-bomb electric fields over a hypothetical design frequency range, 

starting at the cut-off frequency. The corresponding distances to the random 

frequencies are specified in a results table. Those results are shown in Table 16. 

 

 
Table 16.   The E-Field Determination Results   

Table 16 provides a good picture to compare the frequency-

distance-E-field relations. At first look, it seems it is beneficial to use high 
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frequency ranges for the e-bomb, for the purpose of getting higher E-field values. 

Nevertheless, since a double exponential pulse is used for coupling, high 

frequencies at double exponential pulse spectrum corresponds to low amplitude 

values of far E-field (See Figure 12). Much stronger fields are available when 

considering the lower frequency of the double exponential waveform.  Specific 

information about this issue is in Appendix. 

According to the entire range of calculated results shown in Table 

16, an average value of far E-field coupling to the target cables was selected as 

9 kV/m (with corresponding values of frequency and range of 109 meters) and 

formed the basis for the amplitude of the e-bomb threat field applied in the 

CEMPAT cable coupling program to simulate an e-bomb attack. 

2. Results Evaluation 

Considering each IADS cable type, and the optimum coupling results that 

will control response levels and considering the double exponential transient 

threat expected from an e-bomb weapon, the analytically determined best 

coupling parameters were used in the CEMPAT program to achieve optimum 

coupling results. In other words, the effects of the e-bomb on the model of 

interest are achieved and can be observed in Table 17. Actually, those results 

are evaluated as a summary of the assessment runs in Chapter III. 

In this table, PAA and RAI values for each cable type and length can be  

compared and this comparison gives an idea about best or optimum coupling 

situations along with the height, diameter, and impedance values for the cable 

configurations of interest in the IADS model.  
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Table 17.   The Objective Coupling Results 

 
Figure 21.   Length vs. PAA and RAI  
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A good comparison example plot for length vs. PAA and RAI, out of this 

table, can be observed in Figure 21. PAA and RAI reactions are directly 

proportional to the cable length. Nevertheless, as was mentioned in the length 

determination runs, after a specific cable length (integration length), PAA and 

RAI values do not give that proportional response to the cable length.  

Figure 21 only shows the metrics from the analysis.  Some response plots 

that were created out of the CEMPAT program for an average value of the cable 

lengths in the target system, which should be 30 meters configurations, can be 

viewed in Figure 22. These plots illustrate the reactions of each cable type 

(phone, power, LAN, and signal) in the target system, against the e-bomb effects.  

 

 
Figure 22.   The CEMPAT Program Output Plots 

The e-bomb effects examined in Table 17 and observed in Figure 21 and 

Figure 22 will be further evaluated in terms of PAA and RAI values. The next step 
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will be to investigate how the target system is going to respond to those effects, 

and how it is expected to react to the currents created by the e-bomb. The 

expected reactions of the target should be any upsets that can render the target 

system nonfunctional to the potential of the e-bomb to inflict moderate or 

catastrophic kill levels operationally.  

B.  THE CONVENTIONAL WEAPONS SCENARIO 

A Guided Bomb Unit (GBU-10 Paveway II) will be tested in conventional 

weapon scenario to compare its effects with the e-bomb on the selected system 

of interest model. 

The Guided Bomb Unit-10 (GBU-10) consists of an MK-84 2,000-pound 

general purpose or penetrating warhead with an added laser guidance. The 

operator illuminates a target with a laser designator, and then the munition 

guides to a focused laser energy reflected from the target. A picture of the GBU-

10 bomb is in Figure 23. 

 

 
Figure 23.   GBU-10 Paveway II (From: Bombas Guidas, 2009) 

According to the Air Force, the munition was used during Operation 

Desert Storm and hit 78 percent of its targets. The platforms were used during 

Operation Desert Storm, by F-15E and F-111F aircraft mainly against bridges, 

Scuds, C3I (Command, Control, Communications, Intelligence) nodes, and 

bunkers. 



 67 

There are two models of GBU-10 Laser Guided Bombs (LGB): Paveway I 

has fixed wings and Paveway II has folding wings. Paveway II models have 

these improvements: detector optics and housing made of injection-molded 

plastic to reduce weight and cost; increased detector sensitivity; reduced thermal 

battery delay after release; increased maximum canard deflection; laser coding; 

folding wings for carriage, and increased detector field of view. (Paveway II's 

instantaneous field of view is thirty percent greater than that of the Paveway I's 

field of view) (Military Analysis Network, n.d.). 

An unclassified Joint Munitions Effectiveness Manuals (JMEM) 

weaponeering program is used to calculate the possible effects of the GBU-10 

Paveway II on the each nodes of selected target model. In order to be able to 

examine the outputs of the JMEM program, some definition will be given related 

to program outputs and basic concepts of conventional munition operation. 

1. Definitions 

Some definitions that help understanding the result evaluation of the 

JMEM program are as follows: 

a. Weaponeering 

Weaponeering is the process of determining the type of weapon, 
fin, sensor, fuse, etc. required to achieve a specific level of target 
damage. It is a key task in the force application planning cycle. The 
process considers target vulnerability, target damage criteria, 
weapon effects, munition or dispenser delivery errors and weapon 
and/or dispenser reliability. (Product Brochure ) 

Weaponeering processes are the main part and heart of an 

organized attack against any target. 
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b. Circular Error Probability 

In the military science of ballistics circular error probability (CEP) is 

a measure of a weapon system's precision. It is defined as the radius of a circle 

into which a warhead, missile, bomb, or projectile will hit at least 50% of the time 

(The Free Dictionary). 

The smaller the CEP value, the higher the probability of hit. 

Therefore, CEP value is very important in weaponeering calculations. 

c. Types of Kills 

Functional kill (F-Kill) is to render a targeted installation, facility, or 

target system unable to execute its primary function. (Military Dictionary-Terms 

Defined) An M-Kill destroys one or more of the vehicle's vital drive components 

(for example, breaks a track on a tank) and immobilizes the target. It does not 

always destroy the weapon system and the crew; they may continue to function. 

Catastrophic kill requires a weapon system and/or the crew is destroyed (Global 

Security). 

Kill levels can be determined with respect to the importance level of 

the target and the requirement of the target to be damaged, for the perpetuation 

of the operation. 

d. Single Sortie Probability of Damage  

Single Sortie Probability of Damage (SSPD) is an index or 

percentage that Joint Munitions Effectiveness Manuals calculate the 

effectiveness of the conventional weapon blast and fragmentation (Defense 

Technical Information Center, n.d.). 

SSPD is obtained out of weaponeering calculations and gives the 

probability of damage on the target. Therefore, SSPD is an important metric that 

helps the attacker to decide the potential of the target to be destroyed. 
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2. JMEM Results and Evaluations 

An SA-2 integrated air defense system, which is identical to the system of 

interest model in this study, is selected as a target in JMEM program. SA-2 

missile system has five nodes, which are identical to the nodes on this study. The 

JMEM program allows the user to select only one of each node at a time. So, a 

GBU-10 was applied to each node one–by-one, and the results related to each 

node attack are in Table 18. 

 

 
Table 18.   JMEM Program Run Inputs/Outputs 

Most integrated air defense systems have effective altitude capability of 

30,000 feet to 80,000 feet. The probability of hit decreases as the altitude gets 

higher. Because of that, the system of interest model effective altitude capability 

is assumed 50,000 feet, which is an average value in this case. According to the 

laser-guided bomb delivery envelope in Figure 24, a level attack is the best 

method, and a true speed value of 550 Knots is expectable at this altitude. 

Finally, the CEP value selected as 17 feet, since it is an acceptable average 

value and it is a default value of the JMEM program. 
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Figure 24.   Representative Laser Guided Bomb Delivery Envelope (From: Military 

Analysis Network, 2009) 

As it can be viewed in Table 18, the SSPD values are almost the same for 

each attack. The SA-2 missile system has five nodes while the system of interest 

model in this study has six nodes. Nevertheless, since all of the nodes in both 

systems are identical to each other, the sixth node in the system of interest 

model is expected to have the same results with other nodes. 

The obtained results from the JMEM program for the effectiveness of the 

GBU-10 bomb is the same as the Air Force report from Operation Desert Storm 

hit percentage (78%). Out of the results, one can conclude that, in order to have 

a 78% SSPD on the system of interest model, six passes/attacks on the target is 

required.    



 71 

V. DAMAGE ASSESSMENT 

In this chapter, e-bomb effects on the IADS target system will be assessed 

by using the coupled current scalar results outlined earlier in Table 17. This 

assessment will be analyzed in detail based on some procedures, assumptions, 

and principles that will be described in the material that follows. Out of this 

analysis, target system node power, voltage, and energy levels, which are 

formed on the electronic equipment system nodes by the hypothetical e-bomb, 

will be calculated using the current metric values in Table 17.  Once the power, 

voltage and energy levels are formed, these calculations will be compared to 

some officially reported effect threshold results derived from reputable 

experimental effect analysis of the current formed power, voltage, and energy on 

similar electronic components. Information about those experimental data table 

can be found in analysis assessment section of this chapter in detail. 

A. THREAT ENVIRONMENT 

Every node of the IADS target is interconnected to all other IADS nodes 

with representative, appropriate types of intra-site cabling.Those connection 

features vary by type and with respect to their specifications, functional purposes 

and mission requirements in the system.  The details associated with each cable 

connection and cable-load characteristics will be covered separately for their 

individual threat environment responses and analyzed in this section for the 

effects levels that might be expected. 

In order to be able to solve the assessment problem and follow the 

intended procedure analysis, Norton equivalent circuit principles will be used to 

describe the connection characteristics. The loads attached to the Norton 

equivalent circuit are assumed matched impedances. In this case, maximum 

power delivered to the RL will occur at a level that is one-half of the currents 

induced on the cables. This is because one-half of the induced power will also be 
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dissipated by the Thevenin equivalent impedance in delivering load currents. A 

representative Norton equivalent circuit adapted to the target system nodes can 

be seen in Figure 25.  

 
Figure 25.   Adapted Norton Equivalent Circuit 

1. Power Cable Threat Environment 

The threat environment for the power cable can be viewed in Figure 26. 

The threat field is induced on the bulk power cable, which is composed of five 

individual wires, outside the shelter. These five wires include separate wire 

conductors for phase a, b, and c power connectivity along with a ground wire and 

a return wire.  The e-bomb created current value in Table 17 represents the 

induced bulk current on the entire power cable. Since that bulk cable is not 

directly connected to the electronic components inside the shelter because each 

wire in the bulk cable is directly connected, those wire currents need to be 

calculated with respect to their relationship to the overall bulk cable current. As a 

reasonable approximation, dividing the induced bulk cable current by the square 
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root of the number of wires contained gives the wire current (See the formula in 

Figure 26).  There is no shielding assumed for the power cabling. 

 
Figure 26.   Power Cable Threat Environment 

2. Signal Cable Threat Environment 

The Signal cable threat environment can be viewed in Figure 27. As 

described previously, the signal and LAN cable in the IADS target system are 

assumed to be designed with a 30 dB shielding. This is a reasonable and 

expected moderate cable shielding value for such a system, because even if the 

shielding would be higher than 30 dB, i.e., 50 dB, possible cracks or apertures in 

the connection parts of the cables can occur. On the other hand, less than 30 dB 

shielding would not be realistic since it is a very low value for such a system. 

Therefore, 30 dB was selected, as it would be a moderate and reasonable 

shielding value for such a situation. 
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Being shielded, the signal cable will no longer carry all of the induced 

current on the bulk cable but that current will be reduced with respect to the ratio 

of shielding value. Since it has a 30 dB shielding, the wire current carried to the 

RL or to the electronic components can be calculated by dividing the induced 

bulk current by 1000 (See the formula in Figure 27).  

 
Figure 27.   Signal Cable Threat Environment 

3. LAN Cable Threat Environment 

Figure 28 represents the threat environment for the LAN cable. LAN 

cabling is also assumed to be designed with a 30 dB shielding value similar to 

the signal cable. Therefore, the same considerations and calculations on the 

signal cable can be applied to the LAN cable as well. 
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Figure 28.   LAN Cable Threat Environment 

4. Telephone Cable Threat Environment 

The telephone line in the IADS target system was designed as a two-wire 

parallel cable in order to make it realistic, since it is broadly used for telephone 

communication lines. The threat environment for the telephone line is identical to 

the power cable and can be observed in Figure 29. Although the two wires in the 

bulk telephone cable are actually separated from each other by a plastic material, 

the same current sharing calculation method used earlier in the power cable 

threat environment can be applied to two-wire telephone cable threat 

environment. Hence, the wire current can be derived by dividing the induced bulk 

current by the square root of two (See the formula in Figure 29).  No telephone 

line cable shielding is assumed. 
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Figure 29.   Telephone Cable Threat Environment 

B. ANALYSIS PROCEDURE 

In order to implement the analysis procedure, some first principle rules are 

needed. The induced wire current values at each system node will be applied to 

those principle rules, and then using appropriate fundamental equations, power, 

voltage, and energy values formed on the electronic equipment components (on 

RL) will be calculated.  

Since the e-bomb created current has a pulse duration, and it is resonant 

in nature, the fundamental formulas will be based on Root Mean Square (RMS) 

value of the currents as well as peak current values. RMS value, or average 

value, of a sinusoidal resonant current can be calculated dividing the peak 

current by the square root of two. 
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The fundamental formulas for the intended procedure to handle these 

currents are as follows: 

Since the mentioned threshold level experimental data table, which is 

used in this study as a reference for comparison, involves the maximum voltage 

values, e-bomb created max voltage values will be calculated and used on RL, 

instead of RMS voltage values.  These peak value results will be compared with 

this threshold level experimental maximum voltage to determine the potential 

effects.  Multiplying the peak or maximum current by the RL impedance gives the 

maximum voltage on the RL, as it is shown in equation 17. 

 
  (17) 

  

The RMS voltage formed on the electronic equipments can be calculated 

by equation 18 

 
  (18) 

 

Using this RMS voltage and RMS current values, the average power 

formed on the electronic equipment can be derived as in equation 19: 

 

  (19) 

 

The pulse durations of the induced currents are calculated by the 

CEMPAT program for the results of exposure to the hypothetical e-bomb. Using 



 78 

these values, the average energy, to which the electronic equipment is exposed 

for this short period of time, can be calculated by equation 20. 

 

  (20) 

 

Where  

 : Pulse Duration. 

C. ANALYSIS ASSESSMENT 

Using the fundamental formulas for the analysis procedure, voltage, 

power, and energy on the electronic components, is calculated with respect to 

each cable type in Table 17, Appropriate analysis results tables are created, for 

each cable type in order to be able to examine the calculation results. Following 

this compilation, those analysis tables are compared to the mentioned threshold 

level experimental reference table created and published by the Defense Nuclear 

Agency (now the Defense Threat Reduction Agency). 

1. Reference Data 

One of the published experimental data results that will be compared to 

analysis procedure results in this study is the data published by Defense Nuclear 

Agency, which can be viewed in Figure 14. The bars on this figure represent the 

experimental range of values where possible damage occurrences on the device 

may occur when it is exposed to corresponding power levels. This chart was 

created based upon experimental results of standard injection susceptibility test 

waveforms that monitored and documented damage occurrences. As it is 

depicted in the chart, increasing power levels corresponding to the bars for each 

device can lead that device to serious damage results. 

Another reference data set used to compare to the analysis procedure 

results can be examined in Table 19. In this table, electronic components are 
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categorized into four groups as high power discrete, low power discrete, CMOS, 

and TTL circuits. The upset and burnout threshold levels of voltage, power, and 

energy are available for three frequency levels: 200 MHz, 600 MHz, and 900 

MHz at each corresponding electronic component. Among these three frequency 

levels, 600 MHz and 900 MHz are exactly in the range of the e-bomb operating 

frequency. Therefore, these frequency levels are very compatible for the 

intended comparisons.  

 

 
Table 19.    Upset/Burnout Thresholds (Pulse Width=100 nanosecond) (From: DNA, 

1986) 

All of the energy threshold levels in this experimental table are calculated 

with respect to a standard injection waveform of 100 ns in pulse duration, while 

the e-bomb formed energy on the electronic equipments are calculated based on 

the pulse durations calculated by the CEMPAT program. Actually, all of the pulse 

durations of the e-bomb created currents are slightly less than 100 ns, averaging 

about 60 ns in duration, which can possibly be viewed as a drawback for the 

formed energy approach of this analysis with respect to the energy threshold 

levels in the reference table.  However, the results in Table 17 are based on 

transmission-line modeling of a distributed system excited by a hypothetical 

threat, therefore it is assumed possible that “true” current durations could be 

larger than the 60 ns (on the average) than the model predicts.  Transmission 

line models are inherently high-Q, while practical systems are damped 
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somewhat, and responses are expected to reasonably exceed the model 

prediction of duration. 

The electronic components indicated in this reference table are very 

commonly included in most electronic systems; therefore, the same components 

in the table are expected to be included at all of the target system nodes as well. 

In the next section, the analysis procedure described above are 

implemented, and the results compiled into a summary table.  Finally, the 

modeled results and the two described threshold effect reference data values will 

be compared and demonstrated to conclude what kind of effects the e-bomb 

might possibly have on the system of interest (IADS target). 

2. Data Comparisons 

Out of the analysis procedure and fundamental formula calculations, 

appropriate tables, combined with both calculation results and reference data, 

are created by which the calculation results can be matched with the reference 

data table. Those created calculation result tables are highlighted and coupled 

together with the experimental data tables for each cable type environment 

individually. 

a. Power Cable Data Comparison 

The e-bomb coupling results for power cable threat environment is 

satisfactory enough to exceed the entire experimental data threshold levels table. 

As it is depicted in Table 20, the power, voltage, and energy values formed on 

the electronic equipment by the e-bomb model are well above the upset and 

burnout threshold levels at the experimental data table.  

In addition, the formed power values, 2.5 kW to 3 k W, correspond 

to the bars in Figure 14 for High Power Transistors, Silicon Controlled Rectifiers, 

Germanium Transistors, Rectifier Diodes, and Reference Diodes, which means 

that those electronic components are potential candidates for damage. 
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Table 20.   Data Comparison for Power Cable Environment  (Model results are 

highlighted, threshold levels are shown below the model results) 

b. Signal Cable Data Comparison 

The comparison in Table 21 reflects the 30 dB shielding 

configuration for the signal cable. Note, that there are some threshold levels in 

the burnout section which could not be exceeded because of shield protection. 

An important observation is that all of the experimental threshold levels for upset 

were exceeded by the e-bomb simulation data. In addition to all power and 

energy threshold levels in the burnout section, the other below-threshold 

condition involved the voltage threshold levels for high power discretes.  The 

experimental thresholds were not exceeded at 600 and 900 MHz as is shown. 
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Table 21.   Data Comparison for Signal Cable Environment (Model results are 

highlighted, threshold levels are shown below the model results) 

c. LAN Cable Data Comparison 

Since the signal and LAN cable are identical to each other with 

respect to their specifications, and they have the same shielding level, their 

response to the threat environment is identical. As it can be seen in Table 22, the 

comparison results correspond to the same threshold levels with the signal cable. 

In addition, the formed power values for both Signal and LAN 

cables are 2.2 watts to 3.2 watts, which correspond to the bars for Point Contact 

Diodes, Microwave Diodes, and Integrated Circuits in Figure 14. 
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Table 22.   Data Comparison for LAN Cable Environment (Model results are 

highlighted, threshold levels are shown below the model results) 

d. Telephone Cable Data Comparison 

Even though the lowest e-bomb created Peak Absolute Amplitude 

(PAA) and Root Action Integral (RAI) values of the induced current occurred on 

the telephone cable, among other cable types, the highest formed results are 

derived out of telephone cable threat environment. This is because it is not 

shielded, and it consists of only two wires. Therefore, its current is divided by 

square root of two but not five as power cable and not divided by any value 

because of the shielding effect. As a result, those circumstances let the 

telephone cables in the target system have the highest expected termination 
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equipment load currents in the target system. Consequently, just like the power 

cable, the telephone cable exceeds all of the threshold levels of the experimental 

data table as can be seen in Table 23. 

 
Table 23.   Data Comparison for Telephone Cable Environment (Model results are 

highlighted, threshold levels are shown below the model results) 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The Chapter V data comparison tables for each type of cable investigated 

the possible effects of the hypothetical e-bomb on the target nodes very well. 

Based on the comparison results derived in those evaluation tables, at least an 

upset is expected on all of the electronic equipment at each considered node. 

Moreover, all of the equipment connected to the power and telephone cables are 

possible candidates for being completely damaged (burned out). Nevertheless, 

voltage threshold levels for both upset and damage of some electronic 

components, i.e., low power discretes, CMOS and TTL circuits, connected to the 

power and telephone cable were shown to exceed those that are predicted by 

the voltage values formed from the outputs expected from a hypothetical e-bomb. 

Shielding on the signal and LAN cables played a very important role on 

protecting the sensitive electronic devices connected to those nodes from 

transient current surges created by the e-bomb. Therefore, it is concluded that 

shielding is a very important factor for such an IADS to be adequately protected 

against EMI or EMP effects. In this analysis, a 30 dB shield was assumed for 

signal and LAN cabling, and it appears easily achievable.  This study determined 

that the degree of shielding (30 dB) was very effective on the electronic schemes 

considered. On the other hand, shielding can sometimes be penetrated because 

of any cracks or gaps at any connection points. A very effective shielding 

method, including an assurance margin, should be selected since it plays such 

an important role, and precautions should be taken against those cracks and 

gaps on the cables in order to eliminate the penetrations. A starting point for that 

shielding requirement would appear to be the 30 dB shield used in this study for 

those cables. 

A previously published, and open-source in format, theoretical design of 

an e-bomb (Kopp, 1996) showed that some components such as power 
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generator, vircator, and antenna shape/diameter, along with delivery system 

configurations are very challenging aspects that must be tackled to implement 

the concept of an e-bomb. A limiting set of factors for the e-bomb design 

investigated in this study were the cut-off frequency and the length of the 

waveguide feeding the dish antenna, because they determine the cut-off 

frequency and the overall e-bomb spectral performance range. If another method 

could solve this problem, and support extending the frequency coverage over 

what was explored here could be developed, then the simulated e-bomb effects 

could be even more of a deterrent. 

In the Modeling and Electromagnetic Coupling chapter, the data 

determination tables provide a very good opportunity for examining the best 

coupling values associated with this study. Those coupling data values were 

carefully computed from first principles and expected to accurately depict the 

modeled configuration since they were calculated from accepted and proven 

CEMPAT transmission-line coupling program runs, and the range of all model 

values were all within reasonable limits. Eventually, those tables are expected to 

be very beneficial for understanding the variations and behaviors of those true 

coupling data should it ever be collected. 

From an operational view, this study shows the possible benefits of using 

an e-bomb in an attack against an IADS system. In delivery, the attack can most 

likely involve only one aircraft that is positioned well above the IADS’ effective 

altitude range but still be expected to have an effect on the entire distributed 

system as analyzed in this study.  

It is claimed in this study that six separate DMPIs could be taken out of the 

theater by the e-bomb attack with only one pass over the target. Even if the 

maximum expected effects could not be achieved, it could cause temporary 

malfunction on the target system, and that provides an advantage for the rivals. 

On the contrary, this study claims that an attack against the same target, which 

has six nodes, using conventional munitions will need six passes or six separate 
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attacks to the target. This situation leads an operation plan to consider much 

more criteria, i.e., more support, more protection, more cost, than it does for an 

e-bomb attack.  

In addition, assuming that the system of interest was not mobile and its 

nodes were covered with very robust fixed facilities that conventional munitions 

could not penetrate, an e-bomb attack could be desired since it does not deal 

with the features associated with the physical infrastructures but, instead, 

interacts with and effects the node electronic equipment.  

In addition, the enemy may not even realize an e-bomb attack on 

electronically equipped targets has occurred since the platform is dropped off 

high above the ground and the electromagnetic propagation is a transparent 

threat that travels at the speed of the light.  

B. RECOMMENDATIONS AND FUTURE WORK 

Reliability of the electronic devices involved in a modern command and 

control system is a broad area in the open literature; therefore, it might be 

possible to find another useful study with respect to the issue of the reliability of 

devices which would lead to an assessment of the e-bomb created current or 

voltage on the target system and further literature research. That research might 

indicate either increased, or decreased reliability would be expected other than 

that which was assumed in this study.  One finding of this study was that the 

assumed shielding of 30 dB was very effective against the e-bomb coupling.  

With respect to reliability, a good follow-up study might look into whether that 30 

dB shield would be expected to remain effective over the lifecycle of modern 

electronic equipped systems, which can cover several decades. 

In this study, although the threshold level tables, which are created by the 

Defense Nuclear Agency, used to compare with the e-bomb formed voltage, 

power, and energy is a very feasible benchmark, some other theoretical 

threshold value tables that best fit the real comparison needs of e-bomb formed 
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values should also be created. Those extensions to this study need to include 

investigations into the direct feasibility of the assumed waveshape, pulse 

duration, and operating frequency of the e-bomb. For example, the table used in 

this study only covers 200 MHz, 600 MHZ, and 900 MHz frequency values, and it 

is still feasible with the e-bomb in this study to, perhaps, have an overall range of 

operating frequencies that would go as low as 200 MHz. In addition, the table is 

created with respect to 100 ns pulse duration while created currents pulse 

durations last only around 60 ns. Although having 60 ns can be considered a 

benefit for a more precise energy comparison result, it is still not the best match 

with the table. If it were more than 100 ns and the energy threshold level was 

exceeded, then it would cause conflictions that it might have thought as it was 

because of the longer pulse duration. 

Therefore, it would be more beneficial to create a threshold level table, 

which is particularly relevant to the e-bomb waveshape, frequency range, and 

created current pulse duration. Another opportunity for creating such a theoretical 

table would provide that the e-bomb design considerations and decisions would 

be based on the e-bomb specification, configuration, and operational feature 

requirements with respect to its wave shape, frequency range, instead of  on 

available data of threshold upset/damage effects. Therefore, the e-bomb platform 

shape, operational features and specifications of the e-bomb, and the created 

table would best match each other. If realizable, the weapon design could be 

extended into new performance regions, previously thought impractical or 

impossible. 
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APPENDIX:  RESPONSE ANALYSIS VIA TRANSMISSION LINE 
MODELING 

This following was written by Lt. Col. Terry Smith, military faculty, 
Information Sciences Department, Graduate School of Operations 
and Information Sciences, at the Naval Postgraduate School, to 
complement the author’s work.  
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